CHAPTER 1: INTRODUCTION	Page
Paragraph 1. PURPOSE AND SCOPE	1-1
2. APPLICABILITY	1-1
3. REFERENCES	1-1
4. PARTNERING EFFORT	1-1
5. DESIGN CONCERNS UNIQUE TO COLD-FORMED	1-1
a. General b. Seismic Design	1-1 1-1
6. USES OF COLD-FORMED STEEL	1-3
a. Generalb. Steel Framing Systems	1-3 1-3
7. COLD-FORMED SUPPLIERS	1-3
8. RESPONSIBILITIES	1-3
a. Designersb. Manufacturersc. Contractord. Contractor Quality Control	1-3 1-4 1-4 1-4
9. MATERIALS	1-5
a. Markingsb. Nomenclaturec. Strain Hardeningd. Damaged Materialse. Fire Resistance Rating	1-5 1-5 1-6 1-7 1-7
CHAPTER 2: DESIGN OF COLD-FORMED STEEL	
Paragraph 1. INTRODUCTION	2-1
2. PRESCRIPTIVE METHODS.	2-1
a. Generalb. Material Thicknessc. Engineered Portions of the Prescriptive Code	2-1 2-1 2-2
3. COLD-FORMED STEEL FRAMING.	2-2
a. General	2-2

(continued)	Page
 b. Design Guidance c. Wall Studs and Roof Trusses d. Effective Width e. Advantages of Cold-Formed Steel f. Limit States g. Design Thickness 	2-2 2-4 2-4 2-4 2-5
4. DESIGN OF STRUCTURAL ELEMENTS	2-5
 a. AISI Specification b. Preliminary Member Selection c. Element Behavior d. Element Slenderness e. Simplified Section Properties f. Members g. Wall Studs and Wall Stud Assemblies h. Design Guide for Cold-Formed Steel Trusses i. Shear Wall Design Guide j. Serviceability Deflection Limits k. Continuous Beams and Joists l. Effect of Holes m. Floor Vibrations 	2-5 2-5 2-5 2-6 2-6 2-7 2-8 2-8 2-8 2-9 2-10 2-10
5. FASTENERS AND CONNECTIONS	2-12
 a. Sheet Metal Screws b. Bolts c. Welds d. Anchors e. Connections and Joints f. Fasteners 	2-12 2-12 2-12 2-13 2-13 2-15
6. USEFUL RELEVANT INFORMATION	2-15
a. Beam Diagrams and Formulasb. Material Weightsc. Software	2-15 2-15 2-15
CHAPTER 3: SEISMIC DESIGN GUIDANCE FOR SHEAR WALLS	
Paragraph 1. INTRODUCTION	3-1
2. TI 809-04, SEISMIC DESIGN FOR BUILDINGS	3-1
3. STRUCTURAL DESIGN CRITERIA	3-3
4. DEFLECTION AND DRIFT LIMITS	3-3

	(continued)	Page
5. TO	RSION	3-4
6. CC	OLD FORMED STEEL SEISMIC REQUIREMENTS	3-5
b. c. d.	Wind and Earthquake Loads Boundary Members, Chords and Collectors Shear Panel Anchors Pretension of Diagonal Straps All Steel Design	3-5 3-5 3-5 3-5 3-5
7. DI <i>l</i>	AGONAL STRAP DESIGN	3-5
8. CC	DLUMN DESIGN	3-6
b. c. d.	Column Applied Loads Column Axial Capacity Column Bending Load and Composite Behavior Column Combined Axial and Moment Capacity Column Shear Capacity	3-6 3-6 3-7 3-8 3-9
9. CC	NNECTION DESIGN ASSUMPTIONS	3-9
b. c.	Connection Design Assumptions and Applied Loads Screwed Fastener Connection Design Design Rupture Strength Welded Connection Design	3-9 3-10 3-10 3-11
10. PAN	NEL ANCHORS	3-12
b.	Anchor Shear Capacity Anchor Angle and Plate Design Anchor Bolt Design	3-12 3-12 3-15
CHAPTER 4: MAS	ONRY VENEER/STEEL STUD WALLS, (NONBEARING CONSTRUCTION)	
Paragraph 1. INT	RODUCTION	4-1
2. GE	NERAL DESCRIPTION OF WALL SYSTEM	4-1
3. RE	QUIREMENTS FOR WALL COMPONENTS AND DETAILS	4-1
b. c. d. e. f. g. h. i.	Masonry Wythe Steel Studs and Framing Sheathing Veneer Anchors Fasteners Moisture Barrier Vapor Retarder Flashing Shelf Angles Cavity	4-1 4-2 4-3 4-3 4-3 4-3 4-3 4-4 4-4

TABLE OF CONTENTS

(co	ontinued) Page
k. Masonry Crack Control I. Weep Holes	4-4 4-4
m. Head Joint Vent	4-4
4. WALL SYSTEM DESIGN REQUIREMEN	NTS 4-4
a. Steel Studs	4-4
b. Veneer Anchors	4-6
c. Shelf Angles	4-7
5. WORKMANSHIP	4-7
6. DESIGN EXAMPLE	4-7

APPENDIX A: References

APPENDIX B: Cold-Formed Steel Test Panel Drawings.

APPENDIX C: FEMA 302 and Other Standard Guidance for Cold-Formed Steel Seismic Design

APPENDIX D: Seismic Design Example

APPENDIX E: Prototype Shear Panels for Cold-Formed Steel Seismic Design

APPENDIX F: Seismic Qualification Procedure and Acceptance Criteria for Other Shear Panel Configurations

APPENDIX G: Masonry Veneer / Steel Stud Walls (Nonbearing Construction)

APPENDIX H: Metric Conversion Data Sheet.

FIGURES

Figure	Title	Page
1-1	Design Process for Loadbearing Cold-formed Steel Systems	1-2
2-1	Typical Cold-Formed Section Symmetries	2-3
3-1	Flowchart for Cold-Formed Steel Shear Panel Seismic Design	3-2
3-2	Schematic of CERL Cold-Formed Steel Shear Panel Model	3-4
4-1	Double Track Slip Joint	4-5
B-1	Prototype 3 Story Barracks	B-2
B-2	Shear Wall Test Panel A1	B-3
B-3	Shear Wall Test Panel A2	B-4
B-4	Shear Wall Test Panel D1	B-5
C-1	Design Response Spectrum	C-2

	(continued)	Page
D-1	Design Response Spectrum for Fort Lewis Washington Barracks Building	D-18
D-2	Schematic Drawing of Barracks Building Example	D-18
D-3	Barracks Building Short Direction and Plan Views	D-19
D-4	Example Connection /Anchorage Detail 1 st Row of Table D-5, D-8 – D-17	D-20
D-5	Example Connection /Anchorage Detail 2nd Row of Table D-5, D-8 – D-17	D-21
D-6	Example Connection /Anchorage Detail 3rdRow of Table D-5, D-8 – D-17	D-22
D-7	Example Connection /Anchorage Detail 4th Row of Table D-5, D-8 – D-17	D-23
D-8	Example Connection /Anchorage Detail 5th Row of Table D-5, D-8 – D-17	D-24
D-9	Example Connection /Anchorage Detail 6th Row of Table D-5, D-8 – D-17	D-25
F-1	Schematic Drawing Showing Sensor Locations	F-2
F-2	Modified SAC Cyclic Test Time History with $\delta_{\!y}\!\!=\!\!0.4$ in and 6-in/imn Stroke Rate	F-4
G-1	Wire Anchors	G-2
G-2	Wire Anchor, Details	G-3
G-3	Wire Anchor and Continuos Brick Joint Reinforcement	G-4
G-4	Pintle Anchor	G-5
G-5	Typical Brick Veneer Steel Stud Panel Wall	G-6
G-6	Adjustable Wall Anchor Detail	G-7
G-7	Masonry Veneer Steel Stud Panel Wall Plan View	G-8
G-8	Masonry Veneer Steel Stud Panel Wall Foundation Wall Section	G-9
G-9	Masonry Veneer Steel Stud Panel Wall Structural Steel Section	G-10

	(continued)	Page
G-10	Masonry Veneer Steel Stud Panel Wall Reinforced Concrete Section	G-11
G-11	Masonry Veneer Steel Stud Panel Wall Steel Joist Section	G-12
G-12	Slip Joint Details, Typical Single Track	G-13
G-13	Slip Joint Details, Typical Double Track	G-14
G-14	Slip Joint Details, Parapet Slide Clip	G-15
G-15	Bottom Connection, Track Anchored to Concrete	G-16
G-16	Expansion Joints, Brick or CMU Veneer Joint	G-17
	TABLES	
Table	Title	Page
1-1	Standard Minimum Delivered Uncoated Metal Thickness	1-6
1-2	Fire Rated Assemblies	1-8
2-1	Summary of Prescriptive Methods Limitations	2-1
2-2	AISI Approved Steels	2-4
2-3	Pipe Openings: Maximum Pipe Opening and Web Reinforcement	2-10
2-4	Suggested Capacities for Screw Connections	2-12
2-5	Suggested Design Loads for Fillet and Flare-Bevel Groove Welds	2-13
2-6	Suggested Capacity for Expansion Anchors in Concrete	2-13
2-7	Suggested Capacity for Power Driven Fasteners in Concrete	2-14
2-8	Suggested Capacity for Power Driven Fasteners in Structural Steel	2-14
2-9	Joist End Clip: Allowable Loads	2-14
3-1	Design Coefficients and Factors for Basic Seismic-Force-Resisting Systems	3-3
3-2	Allowable Story Drift, Δ_a	3-3
3-3	Maximum Column-to-Anchor Weld Thickness	3-13

	(continued)	Page
3-4	Maximum Angle Thickness Based on Column-to-Anchor Weld Thickness	3-13
C-1	Occupancy Importance Factor	C-1
C-2a	Values of F_a as a Function of Site Class and Mapped Short-Period Maximum Considered Earthquake Spectral Acceleration	C-1
C-2b	Values of F_{ν} as a Function of Site Class and Mapped 1 Second Period Maximum Considered Earthquake Spectral Acceleration	C-2
C-3a	Seismic Design Category Based on Short Period Response Accelerations	C-3
C-3b	Seismic Design Category Based on 1 Second Period Response Acceleration	C-3
C-4	Coefficient for Upper Limit on Calculated Period	C-7
D-1	Earthquake Ground Motion Definition Summary for Fort Lewis	D-1
D-2	Barracks Building Weight Calculations	D-3
D-3	Short Duration Lateral Seismic Force Calculations for the Barracks Building	D-5
D-4	Long Direction Lateral Seismic Force Calculations for the Barracks Building	D-7
D-5	Diagonal Strap Design in the Short Direction	D-8
D-6	Gravity Load Calculations	D-9
D-7	Trial Stud Sizes and Quantities for One Short-Direction Frame	D-9
D-8	Column Design for Cold-Formed Steel Shear Panels – Barracks Example	D-10
D-9	Column Capacity Calculations for Shear Panels – Barracks Example	D-10
D-10	Column Intermittent Weld Design, and Combined Axial and Moment Capacity	D-11
D-11	Column and Anchor Shear Design	D-12
D-12	Screwed Connection Design	D-12
D-13	Screwed Connection Rupture Strength and Welded Connection Design	D-14

	(continued)	Page
D-14	Shear Panel Anchor Angle and Plate Design	D-15
D-15	Shear Panel Anchor Angle and Plate Design (Continued)	D-16
D-16	Anchor Moment and Anchor Bolt Shear Design	D-16
D-17	Anchor Bolt Tensile and Cone Failure Design	D-17
E-1	Prototype Shear Panel Load Capacities	E-1
F-1	Format for Tabular Coupon Test Results	F-1
F-2	Cold-Formed Steel Shear Panel Instrumentation	F-3
F-3	Cyclic Test Load Protocol	F-4
F-4	Summary of Test Panel Performance	F-5
F-5	Acceptance Criteria for Shear Panels Based on μ,Ω,ρ_1	F-6
F-6	Values for R, Ω_0 and C_d	F-6